Onsager-Machlup functional for SLE loop measures

- Marco Carfagnini (he-they)
 - University of Melbourne

- Join with Yilin Wang (IHES)
- Stochastics and Geometry BIRS Workshop, Banff, September 2024

Table of Contents

- Onsager-Machlup functionals
- SLE loop measures
- Main Theorem

2

Onsager-Machlup functionals

Let B_t be a Brownian motion on \mathbb{R}^n and ϕ be a fixed curve

Let B_t be a Brownian motion on \mathbb{R}^n and ϕ be a fixed curve

•

Let B_t be a Brownian motion on \mathbb{R}^n and ϕ be a fixed curve

∕UV∕

Let B_t be a Brownian motion on \mathbb{R}^n and ϕ be a fixed curve

 $\frac{\mathbb{P}\left(\max_{0 \leq s \leq 1} |B_s - \phi(s)| < \varepsilon\right)}{\mathbb{P}\left(\max_{0 \leq s \leq 1} |B_s| < \varepsilon\right)}$

•

MM

Let B_t be a Brownian motion on \mathbb{R}^n and ϕ be a fixed curve

Theorem (Onsager-Machlup '53)

$$\frac{\mathbb{P}\left(\max_{0\leqslant s\leqslant 1}|B_{s}-\phi(s)|<\varepsilon\right)}{\mathbb{P}\left(\max_{0\leqslant s\leqslant 1}|B_{s}|<\varepsilon\right)}\longrightarrow\exp\left(\mathcal{O}(\phi)\right)$$

²dt $\mathcal{O}(\phi) :=$ $2 J_0$ · / /

())

Let $X \sim \mathcal{N}(0, 1)$, then $\mathbb{P}(X \in A) = \int_A \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} ds$

Let $X \sim \mathcal{N}(0, 1)$, then $\mathbb{P}(X \in A) = \int_A \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} ds$

$$\frac{\mathbb{P}\left(|X - y| < \varepsilon\right)}{\mathbb{P}\left(|X| < \varepsilon\right)} \longrightarrow e^{-\frac{y^2}{2}}$$

Let $X \sim \mathcal{N}(0, 1)$, then $\mathbb{P}(X \in A) = \int_A \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} ds$ $\mathbb{D}\left(|V_{\alpha}| < \alpha\right) \qquad 2$

$$\frac{\mathbb{P}\left(|X - y| < \varepsilon\right)}{\mathbb{P}\left(|X| < \varepsilon\right)} \longrightarrow e^{-\frac{y^2}{2}}$$

The laws of X and X - y are mutually absolutely continuous

Let $X \sim \mathcal{N}(0, 1)$, then $\mathbb{P}(X \in A) = \int_A \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} ds$ $\mathbb{P}\left(|X - y| < \varepsilon\right) \qquad \underline{y^2}$

$$\frac{1}{\mathbb{P}\left(|X| < \varepsilon\right)} \longrightarrow e^{-2}$$

The laws of X and X - y are mutually absolutely continuous

Ininite dimensional analogue

 $(C_0(\mathbb{R}^n), d, \nu)$ metric measure space

Let $X \sim \mathcal{N}(0,1)$, then $\mathbb{P}(X \in A) = \int_A \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} ds$ $\frac{\mathbb{P}\left(|X-y|<\varepsilon\right)}{\longrightarrow} \longrightarrow e^{-\frac{y^2}{2}}$

$$\mathbb{P}\left(|X| < \varepsilon\right)$$

The laws of X and X - y are mutually absolutely continuous

Ininite dimensional analogue

 $(C_0(\mathbb{R}^n), d, \nu)$ metric measure space

 $\rightarrow C_0(\mathbb{R}^n) := \{f : [0,1] \rightarrow \mathbb{R}^n \text{ continol}\}$

us,
$$f(0) = 0$$

Let $X \sim \mathcal{N}(0, 1)$, then $\mathbb{P}(X \in A) = \int_A \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} ds$ $\frac{\mathbb{P}\left(|X - y| < \varepsilon\right)}{\mathbb{P}\left(|X| < \varepsilon\right)} \longrightarrow e^{-\frac{y^2}{2}}$

The laws of X and X - y are mutually absolutely continuous

Ininite dimensional analogue

 $(C_0(\mathbb{R}^n), d, \nu)$ metric measure space $\rightarrow d(f,g) := \max_{0 \leq t \leq 1} |f(t) - g(t)| \quad D_{\varepsilon}(\phi)$ $\rightarrow C_0(\mathbb{R}^n) := \{f : [0,1] \rightarrow \mathbb{R}^n \text{ continous}\}$

$$:= \{\gamma \in C_0(\mathbb{R}^n): \ d(\gamma, \phi) < \varepsilon\}$$
us, $f(0) = 0\}$

Let $X \sim \mathcal{N}(0,1)$, then $\mathbb{P}(X \in A) = \int_A \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} ds$ $\frac{\mathbb{P}\left(|X - y| < \varepsilon\right)}{\mathbb{P}\left(|X| < \varepsilon\right)} \longrightarrow e^{-\frac{y^2}{2}}$

The laws of X and X - y are mutually absolutely continuous

Ininite dimensional analogue

$$:= \{ \gamma \in C_0(\mathbb{R}^n) : d(\gamma, \phi) < \varepsilon \}$$

Let $X \sim \mathcal{N}(0,1)$, then $\mathbb{P}(X \in A) = \int_A \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} ds$ $\frac{\mathbb{P}\left(|X - y| < \varepsilon\right)}{\mathbb{P}\left(|X| < \varepsilon\right)} \longrightarrow e^{-\frac{y^2}{2}}$

The laws of X and X - y are mutually absolutely continuous

Ininite dimensional analogue

$$\frac{\mathbb{P}\left(\max_{0\leqslant s\leqslant 1}\left|B_{s}-\phi(s)\right|<}{\mathbb{P}\left(\max_{0\leqslant s\leqslant 1}\left|B_{s}\right|<\varepsilon\right)}\right.$$

$$:= \{ \gamma \in C_0(\mathbb{R}^n) : d(\gamma, \phi) < \varepsilon \}$$

Let $X \sim \mathcal{N}(0,1)$, then $\mathbb{P}(X \in A) = \int_A \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} ds$ $\frac{\mathbb{P}\left(|X - y| < \varepsilon\right)}{\mathbb{P}\left(|X| < \varepsilon\right)} \longrightarrow e^{-\frac{y^2}{2}}$

The laws of X and X - y are mutually absolutely continuous

Ininite dimensional analogue

$$\frac{\mathbb{P}\left(\max_{0 \leq s \leq 1} |B_s - \phi(s)| < \varepsilon\right)}{\mathbb{P}\left(\max_{0 \leq s \leq 1} |B_s| < \varepsilon\right)} = \frac{\nu\left(D_{\varepsilon}(\phi)\right)}{\nu\left(D_{\varepsilon}(0)\right)}$$

$$:= \{ \gamma \in C_0(\mathbb{R}^n) : d(\gamma, \phi) < \varepsilon \}$$

Let $X \sim \mathcal{N}(0,1)$, then $\mathbb{P}(X \in A) = \int_A \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} ds$ $\frac{\mathbb{P}\left(|X - y| < \varepsilon\right)}{\mathbb{P}\left(|X| < \varepsilon\right)} \longrightarrow e^{-\frac{y^2}{2}}$

The laws of X and X - y are mutually absolutely continuous

Ininite dimensional analogue

$$\frac{\mathbb{P}\left(\max_{0\leqslant s\leqslant 1}|B_{s}-\phi(s)|<\varepsilon\right)}{\mathbb{P}\left(\max_{0\leqslant s\leqslant 1}|B_{s}|<\varepsilon\right)}=\frac{\nu\left(D_{\varepsilon}(\phi)\right)}{\nu\left(D_{\varepsilon}(0)\right)}\longrightarrow\exp\left(\mathcal{O}(\phi)\right)$$

$$:= \{ \gamma \in C_0(\mathbb{R}^n) : d(\gamma, \phi) < \varepsilon \}$$

SLE_k loop measures

SLE κ : random curves on the plane

SLE(1)

Courtesy of Tom Kennedy

Family of measures on the space of curves →

Scaling limit of 2D lattice models: Lawler, Rhode, Schramm, Sheffield, Smirnov, Wang, Werner, Wu, Zhan et al.

SLE(3)

SLE(8)

SLE κ loops: random simple loops on the plane, $\kappa \leq 4$ \longrightarrow Family of measures on the space of simple loops

5

SLE κ loops: random simple loops on the plane, $\kappa \leq 4$ \longrightarrow Family of measures on the space of simple loops

 μ^{κ} : is an infinite, sigma-finite measure on the space of of Jordan curves for each fixed $\kappa \leq 4$

 μ^{κ} : invariant under Möbius transformations of $\widehat{\mathbb{C}}$

 μ^{κ} : is an infinite, sigma-finite measure on the space of of Jordan curves for each fixed $\kappa \leq 4$

 μ^{κ} : invariant under Möbius transformations of $\widehat{\mathbb{C}}$

the Riemann sphere we have that

 $\lim_{\varepsilon \to 0} \frac{\mu^{\kappa} (\text{SLE}\kappa \text{ loop stays in an})}{\mu^{\kappa} (\text{SLE}\kappa \text{ loop stays in an})}$

<u>Theorem (C.-Wang '23)</u> Let $\kappa \leq 4$ and μ^{κ} be the SLE loop measure. For any analytic simple loop γ in

$$\frac{\varepsilon \cdot \varepsilon \cdot \text{neighborhood" of } \gamma)}{\varepsilon \cdot \varepsilon \cdot \text{neighborhood" of } S^1)} = \exp\left(\frac{c(\kappa)}{24}I^L(\gamma)\right),$$

where $c(\kappa) := (6 - \kappa)(3\kappa - 8)/2\kappa$ is the central charge of SLE_{κ} and $I^L(\gamma)$ is the Loewner energy of γ .

 $\lim_{\varepsilon \to 0} \frac{\mu^{\kappa} (\text{SLE}\kappa \text{ loop stays in an})}{\mu^{\kappa} (\text{SLE}\kappa \text{ loop stays in an})}$

" ε -neighborhood"?

Theorem (C.-Wang '23) Let $\kappa \leq 4$ and μ^{κ} be the SLE loop measure. For any analytic simple loop γ in

$$\frac{\varepsilon \cdot \varepsilon \cdot \text{neighborhood" of } \gamma }{\varepsilon \cdot \text{neighborhood" of } S^1 } = \exp \left(\frac{c(\kappa)}{24} I^L(\gamma) \right),$$

where $c(\kappa) := (6 - \kappa)(3\kappa - 8)/2\kappa$ is the central charge of SLE_{κ} and $I^L(\gamma)$ is the Loewner energy of γ .

 $\lim_{\varepsilon \to 0} \frac{\mu^{\kappa} (\text{SLE}\kappa \text{ loop stays in an})}{\mu^{\kappa} (\text{SLE}\kappa \text{ loop stays in an})}$

" ε -neighborhood"?

 $O_{\varepsilon}(S^1) := \{ \text{non-contractible simple loops in } A_{\varepsilon} \}$

Theorem (C.-Wang '23) Let $\kappa \leq 4$ and μ^{κ} be the SLE loop measure. For any analytic simple loop γ in

$$\frac{\varepsilon \cdot \varepsilon \cdot \operatorname{neighborhood}^{\circ} \operatorname{of} \gamma}{\varepsilon \cdot \operatorname{neighborhood}^{\circ} \operatorname{of} S^{1}} = \exp\left(\frac{c(\kappa)}{24}I^{L}(\gamma)\right),$$

where $c(\kappa) := (6 - \kappa)(3\kappa - 8)/2\kappa$ is the central charge of SLE_{κ} and $I^L(\gamma)$ is the Loewner energy of γ .

 $O_{\varepsilon}(\gamma) := \{\text{non-contractible simple loops in } f(A_{\varepsilon})\}$

 $\lim_{\varepsilon \to 0} \frac{\mu^{\kappa} (\text{SLE}\kappa \text{ loop stays in an})}{\mu^{\kappa} (\text{SLE}\kappa \text{ loop stays in an})}$

where $c(\kappa) := (6 - \kappa)(3\kappa - 8)/2\kappa$ is the central charge of SLE_{κ} and $I^L(\gamma)$ is the Loewner energy of γ .

" ε -neighborhood"?

 $O_{\varepsilon}(S^1) := \{ \text{non-contractible simple loops in } A_{\varepsilon} \}$

Theorem (C.-Wang '23) Let $\kappa \leq 4$ and μ^{κ} be the SLE loop measure. For any analytic simple loop γ in

$$\frac{\varepsilon \cdot \varepsilon \cdot \text{neighborhood" of } \gamma }{\varepsilon \cdot \text{neighborhood" of } S^1 } = \exp\left(\frac{c(\kappa)}{24}I^L(\gamma)\right),$$

 $O_{\varepsilon}(\gamma) := \{\text{non-contractible simple loops in } f(A_{\varepsilon})\}$

 $\lim_{\varepsilon \to 0} \frac{\mu^{\kappa} (\text{SLE}\kappa \text{ loop stays in an})}{\mu^{\kappa} (\text{SLE}\kappa \text{ loop stays in an})}$

where $c(\kappa) := (6 - \kappa)(3\kappa - 8)/2\kappa$ is the central charge of SLE_{κ} and $I^L(\gamma)$ is the Loewner energy of γ .

" ε -neighborhood"?

 $O_{\varepsilon}(S^1) := \{ \text{non-contractible simple loops in } A_{\varepsilon} \}$

Theorem (C.-Wang '23) Let $\kappa \leq 4$ and μ^{κ} be the SLE loop measure. For any analytic simple loop γ in

Basis for the Hausdorff topology (on simple loops)!

 $O_{\varepsilon}(\gamma) := \{\text{non-contractible simple loops in } f(A_{\varepsilon})\}$

 $\lim_{\varepsilon \to 0} \frac{\mu^{\kappa} (\text{SLE}\kappa \text{ loop stays in an})}{\mu^{\kappa} (\text{SLE}\kappa \text{ loop stays in an})}$

Functional?

Theorem (C.-Wang '23) Let $\kappa \leq 4$ and μ^{κ} be the SLE loop measure. For any analytic simple loop γ in

$$\frac{\varepsilon \cdot \varepsilon \cdot \text{neighborhood" of } \gamma }{\varepsilon \cdot \text{neighborhood" of } S^1} = \exp\left(\frac{c(\kappa)}{24}I^L(\gamma)\right),$$

where $c(\kappa) := (6 - \kappa)(3\kappa - 8)/2\kappa$ is the central charge of SLE_{κ} and $I^L(\gamma)$ is the Loewner energy of γ .

 $\lim_{\varepsilon \to 0} \frac{\mu^{\kappa} (\text{SLE}\kappa \text{ loop stays in an})}{\mu^{\kappa} (\text{SLE}\kappa \text{ loop stays in an})}$

Functional?

First define energy of chordal SLE κ using Loenwer theory (Friz-Shekhar '17, Wang '19)

Extension to simple loops on the sphere (Rohde-Wang '21)

<u>Theorem (C.-Wang '23)</u> Let $\kappa \leq 4$ and μ^{κ} be the SLE loop measure. For any analytic simple loop γ in

$$\begin{aligned} & \text{``ε-neighborhood'' of γ)} \\ & \text{``ε-neighborhood'' of S^1)} = \exp\left(\frac{c(\kappa)}{24}I^L(\gamma)\right), \end{aligned}$$

where $c(\kappa) := (6 - \kappa)(3\kappa - 8)/2\kappa$ is the central charge of SLE_{κ} and $I^L(\gamma)$ is the Loewner energy of γ .

 $\lim_{\varepsilon \to 0} \frac{\mu^{\kappa} (\text{SLE}\kappa \text{ loop stays in an})}{\mu^{\kappa} (\text{SLE}\kappa \text{ loop stays in an})}$

Functional?

First define energy of chordal SLE κ using Loenwer theory (Friz-Shekhar '17, Wang '19)

Extension to simple loops on the sphere (Rohde-Wang '21)

$$I^L(\gamma) = 0$$
 iff $\gamma = \text{circle}$

<u>Theorem (C.-Wang '23)</u> Let $\kappa \leq 4$ and μ^{κ} be the SLE loop measure. For any analytic simple loop γ in

$$\begin{aligned} & \text{``ε-neighborhood'' of γ)} \\ & \text{``ε-neighborhood'' of S^1)} = \exp\left(\frac{c(\kappa)}{24}I^L(\gamma)\right), \end{aligned}$$

where $c(\kappa) := (6 - \kappa)(3\kappa - 8)/2\kappa$ is the central charge of SLE_{κ} and $I^L(\gamma)$ is the Loewner energy of γ .

 $I^{L}(\gamma)$ is finite iff $\gamma =$ quasi-circle

Conformal restriction property of μ^{κ} [Lawler-Schramm-Werner] [Kontsevich-Suhov][Zhan]

Conformal restriction property of μ^{κ} [Lawler-Schramm-Werner] [Kontsevich-Suhov][Zhan]

$$\frac{df_*\left(\mu^{\kappa} \mathbb{1}_{\{\cdot \subset A\}}\right)}{d\mu^{\kappa} \mathbb{1}_{\{\cdot \subset \tilde{A}\}}} |_{\eta} = \exp\left(\frac{c}{2}\left(\Lambda^*(\eta, \tilde{A}^{\varepsilon}) - \Lambda^*(f^{-1}(\eta), A^{\varepsilon})\right)\right)$$

Conformal restriction property of μ^{κ} [Lawler-Schramm-Werner] [Kontsevich-Suhov][Zhan]

$$\frac{df_*\left(\mu^{\kappa} \mathbb{1}_{\{\cdot \subset A\}}\right)}{d\mu^{\kappa} \mathbb{1}_{\{\cdot \subset \tilde{A}\}}} |_{\eta} = \exp\left(\frac{c}{2}\left(\Lambda^*(\eta, \tilde{A}^{\varepsilon}) - \Lambda^*(f^{-1}(\eta), A^{\varepsilon})\right)\right)$$

 Λ^* : renormalized Brownian loop measure touching η and A^{ε}

$$\Lambda^* (V_1, V_2) = \lim_{R \to \infty} \left(\mathcal{B} \left(V_1, V_2; \mathbb{D}_R \right) - \mathcal{B}(V_1, V_2; D) \right) = \mu_D^{\mathrm{BL}} \left(\mathcal{L} \left(V_1, V_2 \right) \right)$$

 $\log \log R$)

Conformal restriction property of μ^{κ} [Lawler-Schramm-Werner] [Kontsevich-Suhov][Zhan]

$$\frac{df_*\left(\mu^{\kappa} \mathbb{1}_{\{\cdot \subset A\}}\right)}{d\mu^{\kappa} \mathbb{1}_{\{\cdot \subset \tilde{A}\}}} |_{\eta} = \exp\left(\frac{c}{2}\left(\Lambda^*(\eta, \tilde{A}^{\varepsilon}) - \Lambda^*(f^{-1}(\eta), A^{\varepsilon})\right)\right)$$

 Λ^* : renormalized Brownian loop measure touching η and A^{ε}

$$\Lambda^* \left(V_1, V_2 \right) = \lim_{R \to \infty} \left(\mathcal{B} \left(V_1, V_2; \mathbb{D}_R \right) - \right)$$

$$\mathcal{B}(V_1, V_2; D) := \mu_D^{\mathrm{BL}} \left(\mathcal{L} \left(V_1, V_2 \right) \right)$$

 $\mu_D^{\rm BL}$: Brownian loop measure

 $\log \log R$)

Conformal restriction property of μ^{κ} [Lawler-Schramm-Werner] [Kontsevich-Suhov][Zhan]

$$\frac{df_*\left(\mu^{\kappa} \mathbb{1}_{\{\cdot \subset A\}}\right)}{d\mu^{\kappa} \mathbb{1}_{\{\cdot \subset \tilde{A}\}}} \mid_{\eta} = \exp\left(\frac{c}{2}\left(\Lambda^*(\eta, \tilde{A}^{\varepsilon}) - \Lambda^*(f^{-1}(\eta), A^{\varepsilon})\right)\right)$$

we mian loop measure touching η and \tilde{A}^{ε} $\longrightarrow \exp\left(\frac{c(\kappa)}{24}I^L(\gamma)\right)$

 Λ^* : renormalized Bro

$$\Lambda^* (V_1, V_2) = \lim_{R \to \infty} \left(\mathcal{B} \left(V_1, V_2; \mathbb{D}_R \right) - \mathcal{B}(V_1, V_2; D) \right) = \mu_D^{\mathrm{BL}} \left(\mathcal{L} \left(V_1, V_2 \right) \right)$$

 μ_D^{BL} : Brownian loop measure

 $\log \log R$)

Löwner energy?

Löwner energy?

<u>Theorem (Wang '21)</u> $I^L(f(\gamma)) - I^L(\gamma) = 12\mathcal{W}(\gamma, A^c) - 12\mathcal{W}(f(\gamma), f(A)^c)$

9

Löwner energy?

<u>Theorem (Wang '21)</u> $I^L(f(\gamma)) - I^L(\gamma) = 12\mathcal{W}(\gamma, A^c) - 12\mathcal{W}(f(\gamma), f(A)^c)$

\mathcal{W} : Werner measure

$\mathcal{W}(V_1, V_2) := \mu_D^{\mathrm{BL}}(\{\text{loop } \delta \mid \partial \delta \cap V_1 \neq \emptyset, \, \partial \delta \cap V_2 \neq \emptyset\})$

Löwner energy?

Theorem (Wang '21) I^L

\mathcal{W} : Werner measure

<u>Theorem (C. - Wang '23)</u> Let A be an annulus, $\gamma \subset A$ be a simple loop, and $f : A \to f(A)$ be a conformal map. Then we have that

 $\mathcal{W}(\gamma,A^c)-\mathcal{W}(f(\gamma),f(A))$

$$\mathcal{L}(f(\gamma)) - I^{L}(\gamma) = 12\mathcal{W}(\gamma, A^{c}) - 12\mathcal{W}(f(\gamma), f(A)^{c})$$

$\mathcal{W}(V_1, V_2) := \mu_D^{\mathrm{BL}}(\{\text{loop } \delta \mid \partial \delta \cap V_1 \neq \emptyset, \, \partial \delta \cap V_2 \neq \emptyset\})$

$$A)^{c}) = \Lambda^{*}(\gamma, A^{c}) - \Lambda^{*}(f(\gamma), f(A)^{c}).$$

Löwner energy?

Theorem (Wang '21) I^L

\mathcal{W} : Werner measure

<u>Theorem (C.-Wang '23)</u> Let A be an annulus, $\gamma \subset A$ be a simple loop, and $f : A \to f(A)$ be a conformal map. Then we have that

$$\mathcal{W}(\gamma, A^c) - \mathcal{W}(f(\gamma), f(A)^c) = \Lambda^*(\gamma, A^c) - \Lambda^*(f(\gamma), f(A)^c).$$

Remark: $\mathcal{W}(V_1, V_2)$ and $\Lambda^*(V_1, V_2)$ are <u>different!</u>

$$\mathcal{L}(f(\gamma)) - I^{L}(\gamma) = 12\mathcal{W}(\gamma, A^{c}) - 12\mathcal{W}(f(\gamma), f(A)^{c})$$

$\mathcal{W}(V_1, V_2) := \mu_D^{\mathrm{BL}}(\{\text{loop } \delta \mid \partial \delta \cap V_1 \neq \emptyset, \, \partial \delta \cap V_2 \neq \emptyset\})$

SLE_{κ} Loop Measures

		3
Process	Brownian motion	SLE_{κ} loops
<u>Space</u>	$C_0(\mathbb{R}^n) =$ pointed paths	$SL(\widehat{\mathbb{C}}) = \text{simple loops}$
<u>Measure</u>	ν Wiener measure	μ^{κ} SLE _{κ} loop measure
Transformation	shift $T_{\phi}: C_0(\mathbb{R}^n) \longrightarrow C_0(\mathbb{R}^n)$	conformal map $f: SL \longrightarrow SL$
	ϕ_{\uparrow} fixed, $\eta \rightarrow \eta + \phi, \ \nu \rightarrow \nu_{\phi}$	γ fixed, $S^1 \rightarrow \gamma$, $\mu^{\kappa} \rightarrow \mu_f^{\kappa}$
Functional	$\mathcal{O}(\phi) \ , \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$I^{L}(\gamma) \ , \ \ rac{\mu_{f}^{\kappa}\left(\mathcal{O}_{arepsilon}(S^{1}) ight)}{\mu^{\kappa}\left(\mathcal{O}_{arepsilon}(S^{1}) ight)} \longrightarrow \ \exp\left(rac{c(\kappa)}{24}I^{L}(\gamma) ight)$

